

(ISO/IEC - 27001 - 2005 Certified)

SUMMER- 19 EXAMINATION

Subject Name – Engineering Metrology Model Answer

Subject Code:

22342

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Su b Q N.	Answer	Marking Scheme
1	а	Accuracy: - The closeness to the measured value with true value is called accuracy. Precision: - Repeatability of measuring process is called precision.	01 marks for each definition
	b	1) Line Standard 2) End Standard 3) Wave length standard	01 mark each any two
	C	 Advantages of Interchangeability: i) Assembly time is reduced, as the operator is not required to waste his/her skill in fitting the mating components by trial and error. ii) There is an increased output with reduced production cost. iii) Improve quality and reduce the time for operation. iv) The replacement and worn-out or defective parts and repairs becomes very easy. v) The cost of maintenance and shutdown period is also reduced to minimum. 	01 mark each any two
	d	Run out error: It is the total range of the readings of a fixed indicator with contact point applied to a surface rotated, without axial movement about a fixed axis. Run out error is related to concentricity of gear outer diameter with mounting hole.	02 marks for definition
	е	Uses of combination set:- 1)used to check squareness of the work pieces,	01 mark each any two use
		2)use to measure an angle of 45 degree. OUR CENTERS :	

		3)used to find centres of cylindrical objects.		
		4)square head with steel rule to measure the height of	the work pieces	
	f	Causes of surface roughness: - Vibrations, material of the work piece, type of machinin tool, fixtures, cutting tool and work, type form mater conditions (speed, feed and depth of cut), type of coola	rial and sharpness of the cutting tool, cuttin	mark eac
2	g	RMS value in surface finish:- R.M.S. value is defined as the values of the squares of the ordinates of the surface $RMS = \sqrt{\frac{h1^2 + h2^2 + h}{n}}$	e measured from a mean line.	02 marks for definition
		Note:- formula not essential if written give advantage	\sim	
2	a	Parallax error:- This occurs when the pointer in a scale is not observed Now this can understand with help of this diagram, we and the observer is observing the pointer from 3 d position number 2 and we have position number 3. Wh from the location 2 is observing the scale normally, the from the location 1 now you may get the reading at th the observer observes from location 3 again there w eliminated by reducing the distance between the scale of the scale of the scale	have the scale here, and we have pointer here ifferent positions. This is position number 1 en the observer observes the scale and pointe en we get the correct real. When we observe his place which is incorrect real. Similarly whe will be an error. So this parallax error can b	marks fo figure r n
	b	Mechanical Comparator1) Mechanical comparators are robust and compactin design	Pneumatic Comparator Pneumatic Comparators are not portable and compact in design	01 mark each any four point
		2) Usually the Mechanical comparators have linear scale.	The scale is generally not linear	
		searc.		

Contact - 9136008228

	which reduces the accuracy	and in some cases none. Thus the	
		accuracy obtained is more due to	
		absence of friction and inertia.	
	4) Less degree of magnification as compare to	It is possible to obtain high degree of	
	pneumatic comparators.	magnification	
	5) Less costlier as compared to other comparators	Cost is high as compared to	
		mechanical comparators	
C	Hole Basis system In hole basis system the hole is kept as the constant a determine the type of fit. In hole basis system the Lowe - In this system lower deviation of the hole is a basic size.		02 mark for explanation , 02 marks for sketch
	 The higher limit of hole and the two limits of desired type of fit. The system is denoted by symbol 'H'. HOLE BASIS SYSTEM HOLE BASIS SYSTEM HAFT SHAFT SHAFT SHAFT SHAFT SHAFT SHAFT SHAFT 	f size for the shaft are then varied to give the HOLE BASED SYSTEM Size of the Hole is kept constant, Shaft size is varied to get different fits	
	Hole basis system is preferred over the shaft basis syste standard drills or reamers having fixed dimensions, w given dimension. Hence it is convenient to produce var	hile the shafts can be turned or ground to any	
d	 -Work piece is mounted on a glass plate placed on the -Light from lamp at the extreme right is collimated in instrument and is reflected as a parallel beam by the presence of the start of the image of the microscope. -Before the rays reach the eyepiece, it is turned by ano - For the most effective manipulation, the magnifiered of the m	the tube connecting the lamp to the center of rism at the end of the tube. The object to be inspected and this enters the other prism. This is shown in Figure .	02 marks for explanation, 02 marks for sketch
	eyepiece (or is projected). -superimposed on a prepared background engraved on	n glass disk in the eyepiece.	

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

		(150/110 - 2/001 - 2005 Certified)	ENGINEERING
	a	Optical Clamping head Supporting Micrometer Supporting (For lateral Micrometer movement (For longitudinal of table) Base Fig Tool Maker's Microscope	02 marks
			for each explanatio
		Environmental errors:	n
3		 The measuring instruments are assembled and calibrated in certain environmental conditions and are designed to be used in within certain restricted conditions, but when they are used in different conditions, there are errors in measurement, which are considered to be the environmental errors. Most of the instruments are designed to be used within certain limits of temperature, pressure, humidity, altitude etc and when the limits are extended there are errors in the measuring instruments. Here are some precautions to be taken to reduce the environmental errors in the instruments: Use in the instruments within the specified limits of temperature, pressure and humidity for which the instrument has been designed. These limits are mentioned in the instruments instructions manual. If you have to use the instrument beyond the specified limits of environmental conditions, then apply suitable corrections to the recorded measurement. 	
		One can also calibrate the instrument newly in the new conditions.	
		• There are some devices that enable applying the compensation automatically.	
		Calibrationerror:The difference between values indicated by an instrument and those that are actual. Normally, a corr ection card is placed next to the instrument indicating the instrument error. Also called calibration error.	
		Calibration in measurement technology and metrology is the comparison of measurement values delivered by a device under test with those of a calibration standard of known accuracy. Such a standard could be another measurement device of known accuracy, a device generating the quantity to be measured such as a voltage, sound tone, or a meter ruler.	
		Any deviation from standard, engraving scales, is considered as calibration error.	
		OUR CENTERS :	

L.		04
b	Draw the diagram indicates 4.32 mm on vernier scale.	04 marks
	vernier scale reading	
	0 5- 10 15 20	
	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
	0.02 0 1 2 3 4	
	16th division win ydes	
	$\frac{TR = IMSR + VSD \times LC}{-04 + 16 \times 0.02}$	
	= 04 +032	
	= 4.32	
С	Explain in brief construction and working of sigma comparator.	02 marks for
	Construction and working of Sigma comparator:	explanatio
	• The Plunger will hold the contact with the work piece, and it is positioned in place with the	n, 02 marks for
	help of slit diaphragms.	sketch
	 the plunger will have a notch at its centre as shown in the figure. 	
	 A knife Edge is attached to the plunger to magnify the linear movement of the plunger. which is connected to the Cross strip with the help of moving the block. 	
	• The Y-shaped metallic arm is connected to the cross strip to Driving drum. This arm rotated and makes the drum to rotate and hence the pointer will move on the scale.	
	• The first step of magnification take place at the knife edge and cross strip and the second step of magnification is done at the drum diameter and the pointer length.	
	Scale Slit Diarphram	
	Pointer	
	Pointer Spindle pointer	
	Fixed Member	
	Driving	
	Drum 'Y' Arm of Length 'I' Plunger	
	Phospho, Bronze Moving Driving Band Cross Strip	
	Hinge Saphire Bearing Block	
	Sigma comparator	

KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

Τ

Τ

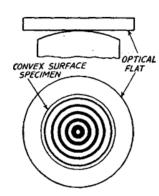
1

Т

	Differentia		is system and shaft	-			01 mark each any
		Hole basis syst	em	Sha	aft basis system		four points
		ize of hole whose lo sumed as the basis siz			e shaft whose uppe d as the basis size.	er deviation	
		imits on the hole ke shaft desired type at fi	•		the shaft kept co varied to have neces		
	mass pro less costi	he Hole basis system oduction because it is ng to make a hole of c ty by stand grills.	s convenient and	production becau	em is not suitable se it is inconvenien costly to have a si	t and time-	
		t is more easily to y to the fit required.	vary a shaft size	• It is some according to the f	e difficult to find th it required.	ne hole size	
	• It storage s	: requires less amou pace.	nt of capital and		d large capital, sto er of tools required size.		
		Bauging of the shaft on the shaft of the sha	can be easily and		ernal measurement e easily convenient		
а	Measure a with sketc	distance of 6.905 mn h.	n with the help of s	slip gauge using 11	2 set. Show the arra	angement	03 marks for no. of gauges, 01
	M	122/1					mark for arrangeme nt
		step	rai	nge	quantity		
			1.0	005	01		
		0.001	1.001	-1.009	09		
		0.01	1.01	-1.49	49		
		0.1	1.6	-1.9	04	_	
		0.5	0.5-	24.5	49	_	
		10	30-	100	08		
			25.	. 75	02	-	
			То	tal	122		
			То	ital	122		

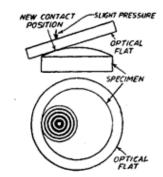
OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

			<u> </u>
		1.005	
		1.9	
		4.0	
	Slip gau	ge arrangement By using M112 table we use 1.005, 1.9 and 4.	
b	A shaft of 25	+- 0.004mm is to be checked by means of GO and NOGO gauge. Design the dimension	04 marks
	of gauge requ	iired.	(02 mark for each dimension)
	Maximum	size = 25+0.004 = 25.004	unnension
	Minimum	size = 25-0.004 = 24.996	
	GO gauge :	allows max. shaft dia. Of	
	25.004		
	NOGO gau; 24.996	ge designed to min. size of	
	24.996		
с	Write the exa	imples of use of following types of fits.	01 mark
	i)	Push fit	each
		Requires a moderate pressure.	
		e.g. gear slip bushing, PVC pipe push fit with solvent	
	ii)	Press fit	
		Interference required to maintain this fit	
		e.g. bushing, bearing pins, gears, pulleys, shaft collar	
	iii)	Running fit	
		Permits free rotation or movement	
		e.g. nut bolt assembly, running shaft in bearing.	
	iv)	Wringing fit	
		Provides either zero interference or clearance	
		e.g. gears of machine tools OUR CENTERS :	
		<td< td=""><td>_/ N</td></td<>	_/ N

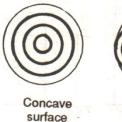


	d	An angle of 49 degrees 29' 18" is to be developed by using std. angle gauge set of 13 pieces.	03 marks
		Calculate the gauges required and sketch the arrangement.	for no of
		Angle gauge set of 12 pieces	angle gauges, 01
		Angle gauge set of 13 pieces	mark for
		[1 [°] 3 [°] 9 [°] 27 [°] 41 [°]] [1′ 3′ 9′ 27′][3″ 6″ 18″ 30″]	arrangeme
		$49^{0} = 41^{0} + 9^{0} - 1^{0};$	nt
		29' = 27' + 3' - 1' ;	
		18" = 18" total 7 pieces required to build the given dimension.	
		1811	
		· · · · · · · · · · · · · · · · · · ·	
		1 1 1 <u>527</u>	
		492918	
		•	
		Arrangement of angle gauges	
	е	Explain procedure to determine whether the given surface is concave or convex by using optical	02 marks each (01
		flat.	mark for
		Concave surface:	explanatio
			n 01 mark for sketch)
		If the optical flat is placed on some spherically concave surface. And the contact is made at the	ioi sketenj
		central high point and in centre a bright circle will be visible. Around it, there will be concentric dark	
		and bright circular fringes. As the distance from the centre increases, the separation between optical	
		flat and surface keeps on increasing and the fringes become narrow and more closely spaced as	
		shown in fig.	
	1		

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228



Fringe pattern as observed through optical flat.


Convex surface:

To distinguish between the two conditions of convex and concave surfaces one edge of the optical flat is lightly pressed. In case of convex surface, by light pressure the optical flat will rock on a new high spot and the centre of the fringe pattern will move as shown in Fig. Also the outer fringes will move closer together. In case of spherically concave surface, the flat is resting on a line passing around the surface and on lightly pressing the edge of the optical flat, the edge line does not move as the pressure is varied. Rather, light pressure at the centre will cause the optical flat to be deflected and will become more nearly parallel to the concave surface, thus reducing the number of fringes observed.

Thus if by light pressure, the centre of fringes is displaced and the fringes are brought closer, it is convex surface and the level at that place must be lowered down to form a flat surface. If by light pressure the number of fringes is reduced and the fringes move apart, it is concave surface.

Test for convex surface.

а	Floating Carriage Micrometer:	Principle
	-The floating carriage micrometer consists of a three units a) A casting base carries a pair of centers, on which the treaded work piece is mounted. b) Another carriage mounted at exactly 900 to the above, which is capable to move parallel to thread axis. c) Another carriage mounted on the above, which is capable to move at 900 to the thread axis on one end of the upper carriage, there is a fixed anvil and a fiducial indicator which ensures that all the measurements are made at same pressure.	and working - 04, Sketch – 02
	Floating Carriage Micrometer is supplied with the set of master cylinders and wires, which are used to measure effective diameter of threads. Limitation of floating carriage micrometer is , it can be used for measurement of external threads only. Least count of this instrument is 0.002 mm	
5	Treadel workpicoz cross cros cross <td></td>	
b	Base tangent method In this method, the span of a convenient number of teeth is measured with the help of the tangent comparator.	Base tangent method 03,
	Consider a straight edge ABC being rolled back and forth along a base circle as shown in fig. Its ends thus sweep out opposed involutes A_2AA_1 and C_2CC_1 respectively. Thus the measurements made across these opposite involutes by span gauging will be constant	Sketch – 0
	Length of arc BD = distance between two opposite involutes	
	= Nm cos ϕ [tan $\phi - \phi - \pi/2N + \pi S/N$]	
	$A = A = A = B = B_1 = C_2$ $B = B_1 = C_0$ $B = C_0$ $B = C_0$	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

					ENGINEERING
	с	h1	45	(h ₁) ² =2025	
		h2	42	(h ₂) ² =1764	CLA -03,
		h3	40	(h ₃) ² =1600	RMS – 03
		h4	30	(h ₄) ² =900	
		h5	35	(h ₅) ² =1225	
		h6	30	(h ₆) ² =900	
		h7	25	(h ₇) ² =625	
		h8	25	(h ₈) ² =625	
		h9	24	(h ₉) ² =576	
		h10	18	(h ₁₀) ² =324	
			CLA=31.4	1056.4	
				RMS= 32.50231	
			h ₁ +h ₂ +h ₃ ++h _n	. / n	
		= 3	314/10		
		= 3	1.4		
		2)DN45-1// h	1 ₁) ² +(h ₂) ² +(h ₃) ² +	$(h)^{2}(10)$	
		=32.5			
	а	Sketches of fr	ringe patterns and	their meanings	any four interference
;			Spherica	Fiat but contact not good Fiat but contact not good Fiat but contact not good Fiat but contact not good Fiat but contact hand edge Fields Fiel	patterns with meaning 1.5 each
_	b	Taper angle o	f nlug gauge		Procedure
	5	ו מאכו מווצופ 0	n hing gange		-03 <i>,</i>
		while slip gau	ges are added bel This can be check	etween sine centers. One roller of sine bar is rested on surface plate, ow other roller till the tapered edge of gauge becomes parallel to the red using dial indicator and height gauge. Then using sine principle the	Sketch – 0
		Sinθ = h / L,			
1		Whore A - ta		ght of slip gauges, L = center distance between the two rollers of sine	
		bar.	per angle, n= Hei	git of silp gauges, L – center distance between the two rollers of sine	

Contact - 9136008228

Т

	ROLLER RIVOT	
 С	Alignment test on lathe (i) Run out of spindle	any of these fig - 03 marks
	(ii) Parallelism of tail stock	

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228